Lung injury and oxidoreductases.

نویسندگان

  • J R Hoidal
  • P Xu
  • T Huecksteadt
  • K A Sanders
  • K Pfeffer
  • A B Sturrock
چکیده

Acute lung injury represents a wide spectrum of pathologic processes, the most severe end of the spectrum being the acute respiratory distress syndrome. Reactive oxygen intermediates have been implicated as important in the pathobiochemistry of acute lung injury. The endogenous sources that contribute to the generation of reactive oxygen intermediates in acute lung injury are poorly defined but probably include the molybdenum hydroxylases, NAD(P)H oxidoreductases, the mitochondrial electron transport chain, and arachidonic acid-metabolizing enzymes. Our laboratory has focused, in particular, on the regulation of two of these enzyme systems, xanthine oxidoreductase (XDH/XO) and NAD(P)H oxidase. We observe that gene expression of XDH/XO is regulatory in a cell-specific manner and is markedly affected by inflammatory cytokines, steroids, and physiologic events such as hypoxia. Posttranslational processing is also important in regulating XDH/XO activity. More recently, the laboratory has characterized an NAD(P)H oxidase in vascular cells. The cytochrome components of the oxidase, gp91 and p22, appear similar to the components present in phagocytic cells that contribute to their respiratory burst. In human vascular endothelial and smooth muscle cells, oncostatin M potently induces gp91 expression. We believe that regulation of gp91 is a central controlling factor in expression of the vascular NAD(P)H oxidase. In summary, the studies support the concept that the oxidoreductases of vascular cells are expressed in a highly regulated and self-specific fashion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NOX enzymes and pulmonary disease.

The primary function of the lung is to facilitate the transfer of molecular oxygen (O(2); dioxygen) from the atmosphere to the systemic circulation. In addition to its essential role in aerobic metabolism, O(2) serves as the physiologic terminal acceptor of electron transfer catalyzed by the NADPH oxidase (NOX) family of oxidoreductases. The evolution of the lungs and circulatory systems in ver...

متن کامل

Protective effect of S-nitrosoglutathione pretreatment on acute lung injury in septic rats

Objective(s): To investigate the protective effect of S-nitrosoglutathione (SNG) pretreatment on acute lung injury (ALI) in septic rats. Materials and Methods: We constructed a rat model of sepsis by cecal ligation and perforation (CLP), and randomly divided into Sham, CLP, and CLP+SNG (0.25 and 0.5 mg/kg) groups. We used H&E; staining an...

متن کامل

Protective effect of vitamin D on radiation-induced lung injury: Experimental evidence

Background: Vitamin D, especially its most active metabolite 1,25-dihydroxyvitamin D₃(Vit D) is essential in regulating a wide variety of biologic processes, such as regulating mesangial cell activation. The objective of this study was to assess the histopathological changes of effectiveness of Vit D as a protective agent against radiation induced lung injury. Materials and Methods: Eighteen Wi...

متن کامل

Establishment of a rat model of radiation-induced lung injury

Background: Radiation-induced lung injury is a refractory side effect in lung cancer radiotherapy, the mechanism still remains unclear, hence an appropriate animal mode may become useful to investigate it. Materials and Methods: 50 female Wistar rats were randomly divided into 5 groups, average 10 rats/cage: A. control group B. 3Gy×10f C. 6Gy×5f D. 12.5Gy×1f E.15.3Gy×1f....

متن کامل

Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats

Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI).   Materials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 106  شماره 

صفحات  -

تاریخ انتشار 1998